您的当前位置:首页正文

高三物理知识点总结

2022-03-20 来源:尚车旅游网

  摩擦力

  1、定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。

  2、产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

  说明:三个条件缺一不可,特别要注意“相对”的理解。

  3、摩擦力的方向:

  ①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

  ②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

  说明:

  (1)“与相对运动方向相反”不能等同于“与运动方向相反”。滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

  (2)滑动摩擦力可能起动力作用,也可能起阻力作用。

  4、摩擦力的大小:

  (1)静摩擦力的大小:

  ①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过静摩擦力,即0≤f≤fm但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。

  ②静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

  ③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。

  (2)滑动摩擦力的大小:

  滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。

  公式:F=μFN(F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。

  说明:

  ①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。

  ②μ与接触面的材料、接触面的情况有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

  说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。

  动量守恒

  所谓“动量守恒”,意指“动量保持恒定”。考虑到“动量改变”的原因是“合外力的冲”所致,所以“动量守恒条件”的直接表述似乎应该是“合外力的冲量为O”。但在动量守恒定律的实际表述中,其“动量守恒条件”却是“合外力为。”。究其原因,实际上可以从如下两个方面予以解释。

  (1)“条件表述”应该针对过程

  考虑到“冲量”是“力”对“时间”的累积,而“合外力的冲量为O”的相应条件可以有三种不同的情况与之对应:第一,合外力为O而时间不为O;第二,合外力不为0而时间为。;第三,合外力与时间均为。显然,对应于后两种情况下的相应表述没有任何实际意义,因为在“时间为。”的相应条件下讨论动量守恒,实际上就相当于做出了一个毫无价值的无效判断―“此时的动量等于此时的动量”。这就是说:既然动量守恒定律针对的是系统经历某一过程而在特定条件下动量保持恒定,那么相应的条件就应该针对过程进行表述,就应该回避“合外力的冲量为O”的相应表述中所包含的那两种使“过程”退缩为“状态”的无价值状况。

  (2)“条件表述”须精细到状态

  考虑到“冲量”是“过程量”,而作为“过程量”的“合外力的冲量”即使为。,也不能保证系统的动量在某一过程中始终保持恒定。因为完全可能出现如下状况,即:在某一过程中的前一阶段,系统的动量发生了变化;而在该过程中的后一阶段,系统的动量又发生了相应于前一阶段变化的逆变化而恰好恢复到初状态下的动量。对应于这样的过程,系统在相应过程中“合外力的冲量”确实为O,但却不能保证系统动量在过程中保持恒定,充其量也只是保证了系统在过程的始末状态下的动量相同而已,这就是说:既然动量守恒定律针对的是系统经历某一过程而在特定条件下动量保持恒定,那么相应的条件就应该在针对过程进行表述的同时精细到过程的每一个状态,就应该回避“合外力的冲量为。”的相应表述只能够控制“过程”而无法约束“状态。

  ‘弹性正碰”的“定量研究”

  “弹性正碰”的“碰撞结果”

  质量为跳,和m:的小球分别以vl。和跳。的速度发生弹性正碰,设碰后两球的速度分别为二,和二2,则根据碰撞过程中动量守恒和弹性碰撞过程中系统始末动能相等的相应规律依次可得。

  “碰撞结果”的“表述结构”

  作为“碰撞结果”,碰后两个小球的速度表达式在结构上具备了如下特征,即:若把任意一个小球的碰后速度表达式中的下标作“1”与“2”之间的代换,则必将得到另一个小球的碰后速度表达式。“碰撞结构”在“表述结构”上所具备的上述特征,其缘由当追溯到“弹性正碰”所遵循的规律表达的结构特征:在碰撞过程动量守恒和碰撞始末动能相等的两个方程中,若针对下标作“1”与“2”之间的代换,则方程不变。

  “动量”与“动能”的切入点

  “动量”和“动能”都是从动力学角度描述机械运动状态的参量,若在其间作细致的比对和深人的剖析,则区别是显然的:动量决定着物体克服相同阻力还能够运动多久,动能决定着物体克服相同阻力还能够运动多远;动量是以机械运动量化机械运动,动能则是以机械运动与其他运动的关系量化机械运动。

  光子说

  ⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量。

  ⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。

  光的波粒二象性

  光既表现出波动性,又表现出粒子性。大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强。

  实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。满足下列关系:

  从光子的概念上看,光波是一种概率波。

  电子的发现和汤姆生的原子模型:

  ⑴电子的发现:

  1897年英国物理学家汤姆生,对阴极射线进行了一系列研究,从而发现了电子。

  电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

  ⑵汤姆生的原子模型:

  1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

  氢原子光谱

  氢原子是最简单的原子,其光谱也最简单。

  1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发现这些谱线的波长可以用一个公式表示:

  式中R叫做里德伯常量,这个公式成为巴尔末公式。

  除了巴耳末系,后来发现的氢光谱在红外和紫个光区的其它谱线也都满足与巴耳末公式类似的关系式。

  氢原子光谱是线状谱,具有分立特征,用经典的电磁理论无法解释。

因篇幅问题不能全部显示,请点此查看更多更全内容