您的当前位置:首页正文

面积计算

2022-09-14 来源:尚车旅游网

  组合图形的面积计算

  教学内容:第106例10和响应的“试一试”,练一练和练习十九的第6~9题。

  教学目标:1、使学生掌握计算环形的面积的方法,并能准确掌握和计算其他一些简单组合图形的面积。

  2、进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。

  教学过程:

  一、 教学例10。

  1、 出示圆环图形,这是什么图形?你知道吗?

  2、 出示例10题目,读题。

  师:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

  小组讨论,确立解题思路。

  交流:(1)求出外圆的面积(2)求出内圆的面积(3)计算圆环的面积

  3、 学生独立操作计算。

  4、 组织交流解题方法,提问:有更简便的计算方法吗?

  小结:求圆环的面积一般是把外圆的面积减去内圆的面积,还可以利用乘法分配率进行简便计算。

  二、“试一试”

  1、出示题目和图形,学生读题。

  师:(1)这个组合图形是有哪些基本图形组合而成的?

  (2)半圆和正方形有什么相关联的地方?

  明确:正方形的边长就是半圆的直径。

  (3)思考一下,半圆的面积该怎样计算?

  2、学生独立计算。

  3、交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。

  小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的。

  三、 巩固练习。

  1、“练一练”。

  思考:(1)求涂色部分的面积,需要计算哪些基本图形的面积?

  (2)计算这些基本图形的面积分别需要哪些条件?

  (3)第一个图形,两个基本图形有什么联系?第二个图形呢?

  明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

  学生独立完成,并全班反馈交流。

  2、练习十九第6~9题。

  (1)第6题。先学生独立完成,再交流。

  交流重点:a、每个组合图形需要测量图中哪些线段的长度?

  b、求每个图色部分面积时,方法是怎样的?

  c、计算中有没有注意运用简便的方法。

  (2)第7题。学生根据图形作出直观的判断,并说说直观判断的方法。然后通过计算检验所作出的判断。

  (3)第8题。学生读题,观察示意图。

  提:a、要求小路的面积实际求求什么?

  b、求圆环的面积,必须知道什么条件?

  c、题目中告诉了我们哪些条件?还有什么条件是要我们求的?

  学生独立解答,并全班交流。

  (4)第9题。

  通过画辅导线的方法,来估计每种花卉所占圆形面积的几分之几,在让学生计算每种花卉的种植面积。

  (5)思考题。学生先充分思考,再组织交流。

  四、读一读“你知道吗?”,并算一算。

因篇幅问题不能全部显示,请点此查看更多更全内容