搜索

...=a6+2a5,若存在两项am,an,使得√(am*an)=4a1,则1/m+4/n的最小值...

发布网友 发布时间:2025-01-01 19:32

我来回答

1个回答

热心网友 时间:2025-01-24 06:48

∵{an)等比数列,设公比为q
a7=a6+2a5
∴a1q^6=a1q^5+2a1q^4
∴q^2=q+2
∴q^2-q-2=0
∴q=2或q=-1
∵an>0
∴q=2
√(am*an)=4a1
am*an=16a1²
a1²[q^(m-1)*q^(n-1)]²=16a1²
∴[2^(m+n-2)]²=16
∴m+n-2=2
∴m+n=4 ==>(m/4+n/4)=1
∴1/m+4/n
=(1/m+4/n)(m/4+n/4)
=1/4+1+m/n+n/(4m)
≥5/4+2√(1/4)=9/4
(均值定理当m/n=n/(4m)是取等号 )
∴1/m+4/n的最小值为9/4
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com

热门图文

Top