发布网友 发布时间:2024-10-23 22:55
共1个回答
热心网友 时间:2024-10-31 23:33
此题有2种方法,方法1:在AC上截取AE=AB,连接DE,求证△ABD≌△ADE,然后得到∠B=∠AED=∠EDC+∠C=2∠C即可得出答案;
方法2:延长AB到E,使AE=AC连接DE,利用“截长法”或“补短法”添加辅助线,将AC-AB或AB+BD转化成一条线段即可.
方法1:在AC上截取AE=AB,连接DE
又∠BAD=∠DAE,AD=AD
∴△ABD≌△ADE
∴∠AED=∠B,BD=DE
∵AB+BD=AC
∴BD=EC∴DE=EC
∴∠EDC=∠C
∴∠B=∠AED=∠EDC+∠C=2∠C
即∠B:∠C=2:1
方法2:延长AB到E,使AE=AC连接DE
证明△ADE≌△ADC
再类似证明得到∠B=2∠AED=2∠C
利用“截长法”或“补短法”添加辅助线,将AC-AB或AB+BD转化成一条线段